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Using physical arguments, I derive the physically correct equations of motion for a classical charged particle
from the Lorentz-Abraham-Dirac equations �LAD� which are well known to be physically incorrect. Since a
charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation
allows for that by imposing a basic condition on the external force. That condition ensures that the particle’s
finite size charge distribution appears as a point charge to the external force. Finite radius charge distributions
are known not to lead to differential equations of motion. The present work is in agreement with the results by
�H. Spohn, Europhys. Lett. 50, 287 �2000�� and by others. An example, uniform acceleration, demonstrates
what the above basic condition entails. For clarity of the argument, I discuss the nonrelativistic case before the
relativistic one.

DOI: 10.1103/PhysRevE.77.046609 PACS number�s�: 03.50.�z, 03.30.�p

I. THE PROBLEM

Since the beginning of the 20th century, the equations of
motion first derived by Lorentz and Abraham �1� and red-
erived in covariant form by Dirac �2� have been the standard
equations of motion for the relativistic dynamics of a classi-
cal charged particle. Yet, these “Lorentz-Abraham-Dirac”
�LAD� equations are known to be seriously defective: they
are of third order rather than second, they violate Newton’s
law of inertia, they have physically meaningless �runaway�
solutions in the absence of an external force, and they have
preacceleration solutions �acceleration prior to the onset of
an external force� as well as postacceleration solutions �ac-
celeration after an external force has ceased to act.�

Despite many attempts throughout the twentieth century
none have been successful in deriving a second order differ-
ential equation of motion free of all the above defects �3�.
After a century of failure, Spohn succeeded in solving that
problem �4�. He considered the manifold of all solutions of
the LAD equation, and he identified as the physical submani-
fold only those solutions that have asymptotically vanishing
acceleration. For this submanifold, all solutions can be ob-
tained from the LAD equation by perturbation expansion.
This is a remarkable result. It solves the century old problem
of the deficiencies of the LAD equations.

The purpose of the present paper is to provide a physical
argument that leads to the same equations that result from
Spohn’s mathematical argument. First, I provide a restriction
on the external forces �Eq. �1� below� that ensures that the
external force cannot see the finite spread of the charge dis-
tribution. The particle will therefore appear to the external
force to be a point charge. Then I show how this restriction
�Eq. �1� below� leads from the LAD equations to the physi-
cally correct differential equations of motion that now re-
place the LAD equations. These equations are—because of
�1�—obtained by a perturbation expansion. And because of
the smallness of the expansion parameter only the first order
is relevant.

The divergence of the Coulomb field at its origin prevents
the existence of classical point charges. Classical charged
particles are therefore necessarily spatially extended. But ex-
tended particles lead to equations of motion that are not dif-
ferential equations: integrodifferential equations and
differential-difference equations of motion for charged par-
ticles have been known for a long time. Examples were
given recently by Medina �5�. If the charge distribution is
restricted to the surface of a sphere, the Caldirola-Yaghjian
differential-difference equations are obtained �see Rohrlich
�6��.

In order to have differential equations of motion, it must
be possible to treat the extended charge as if it were a point
when seen by the external force. This does not seem to be a
problem: just use the center of mass as the representative
point of the particle. This works well indeed but only for
static or quasistatic forces as in gravitation. It does not work
in electrodynamics where external forces can involve radia-
tion of very short wavelengths that can “see” the finite size
of the charge.

Consequently, in order to be able to use differential equa-
tions of motion the external force must vary slowly enough
over the size of the charge distribution so that it will not be
able to distinguish between a small but finite particle radius
and a point particle. For the nonrelativistic case, this requires
the force to satisfy the inequality

��0
d

dt
F�t�� � �F�t�� , �1�

where �0 is defined by �see Ref. �7��

�0 =
2

3

q2

mc3 . �2�

The time interval �0 is very short. Its largest value occurs
when q and m refer to an electron ��0=0.62�10−23 sec�; it is
much shorter for other charged particles.

The force F is assumed to be continuous and piecewise
differentiable with respect to time. The inequality �1� then
states that the force as a function of ct changes negligibly*rohrlich@syr.edu
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over a distance of the order of c�0. That force therefore can-
not see the charge as a distribution.

II. THE NONRELATIVISTIC EQUATIONS

I shall discuss the consequences of Eq. �1� first for the
nonrelativistic case �NR�. The time rate of change of the
momentum is according to the nonrelativistic limit of the
LAD equation,

mv̇ = F + �0mv̈ = F + �0
d

dt
�mv̇� . �3a�

Multiplying Eq. �3� by v we obtain the LAD equations for
the energy rate in the NR limit,

d

dt
�1

2
mv2� = F · v − R + �0

d2

dt2�1

2
mv2� , �3b�

where

R = m�0v̇
2 =

2

3

q2

c3 v̇2 �4�

is the Larmor formula for the radiation rate.
The last terms in each of Eqs. �3� are Schott terms; they

are characterized by time derivatives and can take on both
positive and negative values. They describe internal momen-
tum and energy rates, respectively. In this nonrelativistic ap-
proximation, the rate of emitted radiation momentum is too
small to be included in Eq. �3a�, but the rate of emitted
radiation energy does appear �the second term on the right in
Eq. �3b��. Equations �3� are of third order thus violating
Newton’s first law of motion.

The correct physically meaningful equations can now be
seen easily from the above. Since the time interval �0 is so
small, we would exceed the domain of classical physics and
enter the domain of quantum mechanics if higher powers of
�0 than the first would be included. Taking into account the
restriction �1�, it follows that in this approximation, �0mv̈
=�0Ḟ, so that Eq. �3a� can be written as �8�

mv̇ = F + �0Ḟ . �5a�

Multiplication by v of this equation yields the corresponding
energy rate equation

d

dt
�mv2

2
� = F · v + �0Ḟ · v = F · v − R� + �0

d

dt
�F · v� ,

�5b�

where

R� = �0F · v̇ . �6�

Within this approximation that ignores terms of order �0
2 and

higher, R�=R. Thus, Eq. �6� is the Larmor radiation rate.
The NR form of the LAD equations �3� thus becomes the

physically correct NR equations �5�. I shall call Eqs. �5� “the
nonrelativistic physical LAD equations’’ or ‘‘the NR PLAD
equations.” These equations are second order differential
equations; they satisfy Newton’s law of inertia, and they re-

quire that the particle acceleration vanish asymptotically
since the available forces do so. But the equations must also
be restricted to external forces that obey the fundamental
inequality �1�.

As an illustration of this physically correct dynamics,
consider the case of a uniformly accelerated charge. This
example is chosen to illustrate the importance of the condi-
tion �1�. It will also confirm the emission of radiation during
uniform acceleration that has been questioned repeatedly.

III. UNIFORM ACCELERATION

Uniform acceleration is the motion of a charged particle
under a force that is �for a finite time interval� constant in the
instantaneous rest frame. Relativistically, its world line in
Minkowski space is a finite section of a hyperbola, hence its
alternative name “hyperbolic motion.” For NR motion, that
section must also be short enough to keep the speed within
the NR domain.

I assume a finite time period 2T during which the particle
is accelerated by a constant force,

F = mg = const for �− T � t � T� . �7�

The requirement of continuity of F does not permit a step
function. In fact, the fundamental requirement �1� demands a
sufficiently slow rise and decline of such a force. The sim-
plest example is motion in only one space dimension. Using
f=F /m, I assume

f = g for �t� � T , �8a�

f = 0 for �t� � T1, �8b�

f = g
T1 − t

T1 − T
for T � t � T1, �8c�

f = g
T1 + t

T1 − T
for − T1 � t � − T . �8d�

The requirement �1� further demands that the time interval
T1−T satisfy the inequality T1−T��0. Ignoring that restric-
tion leads to meaningless results. For example, such mean-
ingless results arise in models that involve step function
forces �9�.

For the NR LAD equation, we find for the radiation rate
�4�,

R =
2

3

q2

c3 g2 � 0 for �t� � T . �9�

The NR PLAD equation �6� gives the same result since
within our approximation of first order in �0, R�=R. A uni-
formly accelerated charge does radiate. The last two terms in
Eq. �5b� cancel: the emitted radiation rate is completely ac-
counted for by the loss to the particle of its internal energy
expressed by the Schott term. Relativistically, as can be seen
in the following Sec. IV, the same cancellation takes place
for the respective four-vectors of radiation energy-
momentum rate and the rate of the Schott internal energy-
momentum four-vector.
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IV. THE RELATIVISTIC EQUATIONS

In special relativity, equations can be written in either
three-vector or four-vector form. Not surprisingly, the rela-
tivistic equations are much more concise in the latter form
that I shall therefore adopt. Also, to simplify the appearance
of the equations and make their physical meaning more ap-
parent, it is desirable to remove factors that clutter the equa-
tions. I shall use Gaussian units, c=1, and the Minkowski
space metric is chosen to have trace +2.

The Lorentz force, qF	
v
, is a special case of the general
four-vector force, F	 that acts on a particle of mass m and
charge q. With the velocity v	���= (���� ,����v���). The di-
rect generalization of the NR equations �3� becomes

mv̇	 = F	 + �0mv̈	. �10�

The differentiation in Eq. �10� is with respect to the proper
time � rather than t.

However, this equation is mathematically inconsistent be-
cause both v̇	 and F	 are spacelike four-vectors, i.e., are
perpendicular to the velocity v	 �v̇	v	=0 and F	v	=0�,
while v̈	 is not. Therefore, it is necessary to project v̈	 in Eq.
�10� into the three-dimensional spacelike hyperplane perpen-
dicular to the four-velocity v	. The projection tensor for that
is P	�=	�+v	v� �	� is the metric tensor�. The correct
generalization of Eq. �3� is therefore not Eq. �10� but

mv̇	 = F	 + �0mP	
v̈
. �11�

This is exactly the relativistic LAD equation �2�; it is of third
order. Written out more explicitly, it becomes

mv̇	 = F	 + �0mv̈	 − �0mv	v̇
v̇
. �12�

The middle term on the right-hand side is the relativistic
form of the Schott terms in Eqs. �3�. But now the loss due to
radiation, the four-vector

dP	

d�
= Rv	 where R = �0mv̇
v̇
, �13�

contains not only an energy loss but also a momentum loss.
The radiation rate R is Lorentz invariant and is the relativis-
tic generalization of the nonrelativistic Larmor formula �4�.

The transition from the LAD equation �11� to the physi-
cally meaningful PLAD equation of motion proceeds as in
the NR case. Since higher orders in �0 are negligible, m�̈
 in

the last term of Eq. �11� can be replaced by Ḟ
. This results
in the PLAD equation

mv̇	 = F	 + �0P	
Ḟ
. �14�

The third order LAD equation �11� thus yields a second order
PLAD equation. This is the relativistic generalization of Eqs.
�5�.

As in the NR case, when applied to a charged particle, the
equation of motion �15� must be accompanied by the funda-
mental restriction imposed on the external force. The relativ-
istic generalization of Eq. �1� is �written symbolically�

��0P	����Ḟ����� � �F	���� . �15�

I know of no case where classical electrodynamics �CED�
gives empirically confirmed results that violate this inequal-
ity.

When considering hyperbolic motion, both LAD and
PLAD give the same results relativistically as well as non-
relativistically: the emitted radiation rates are completely ac-
counted for by the Schott terms. More details of the relativ-
istic case can be found in Ref. �10�.

V. SUMMARY

The equations of motion �14� as restricted by Eq. �15� are
the physically correct classical relativistic differential equa-
tions of motion of a charged particle. Their NR limit is given
in Eqs. �5� as restricted by Eq. �1�. These PLAD equations
are free of the unphysical solutions present in the LAD equa-
tions. The restriction on the external force that ensures that
the extended charge is seen as a point charge is necessary in
their derivation.

One may question the generality of this fundamental re-
striction. It may not hold for two reasons: either the dynam-
ics cannot be described by a differential equation but re-
quires a difference-differential equation �as in �6�� or some
other type of equation. Alternatively, the dynamics may be
outside the classical domain and requires quantum mechan-
ics. Failures of CED that require the use of quantum electro-
dynamics �QED� include scattering of radiation by a charged
particle and scattering of a charged particle by a Coulomb
field. Some phenomena that straddle CED and QED are dis-
cussed in the text by Jackson �11�.

With the above limitations, I claim that Maxwell’s equa-
tions and the equations of motion �together with the force
restriction equation �1� or �15�� provide a complete basis of
classical electrodynamics. It is internally consistent, consis-
tent with the law of inertia �LAD is not�, and free of unphysi-
cal solutions.
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